Cart
Free US shipping over $10
Proud to be B-Corp

Principles of Sedimentology and Stratigraphy Sam Boggs, Jr.

Principles of Sedimentology and Stratigraphy By Sam Boggs, Jr.

Principles of Sedimentology and Stratigraphy by Sam Boggs, Jr.


$11.69
Condition - Very Good
Out of stock

Summary

A text for the combined sedimentology/stratigraphy course, or can be used for separate courses, offered in the geosciences at the junior level and up. Covers processes that form sedimentary rocks, describes the important physical, chemical, biological and stratigraphic characteristics of these rocks and interprets depositional environments.

Principles of Sedimentology and Stratigraphy Summary

Principles of Sedimentology and Stratigraphy by Sam Boggs, Jr.

This text is useful for intermediate/advanced level courses in Sedimentology, Stratigraphy, and Sedimentary Petrology. It presents a concise treatment of the fundamental principles of sedimentology and stratigraphy, including the processes that form sedimentary rocks, as well as describing the important physical, chemical, biological and stratigraphic characteristics of these rocks. The text emphasizes the ways in which the study of sedimentary rocks is used to interpret depositional environments, changes in ancient sea level, and other intriguing aspects of Earth history.

About Sam Boggs, Jr.

In the early stages of his professional career, SAM BOGGS, JR., worked as a petroleum exploration geologist for Phillips Petroleum Company, searching for new oil fields in the Four-Corners region of the Rocky Mountains, prior to receiving his Ph.D. degree from the University of Colorado. He then worked for a time as a research geologist for Exxon Production Research Company before beginning an academic career. After joining the University of Oregon in 1965, he taught and carried out research in sedimentary petrology, stratigraphy, field geology, petroleum geology, and geological oceanography. During sabbatical leaves from the university, he served as a Scientist-in-Residence at the Argonne National Laboratory, University of Chicago, visiting professor at the Ocean Research Institute, University of Tokyo, and visiting professor at National Taiwan University's Institute of Oceanography. He was also employed part-time as a research geologist with the U.S. Geological Survey over a fifteen-year period. During his career, Dr. Boggs authored numerous scientific papers in sedimentary petrology, geological oceanography, stratigraphy, and low-temperature geochemistry. He is also author of four previous books. He currently lives in Eugene, Oregon, where he continues to do research as a Professor Emeritus at the University of Oregon.

Table of Contents

(NOTE: Each chapter begins with an Introduction and concludes with Further Reading.)

I. ORIGIN AND TRANSPORT OF SEDIMENTARY MATERIALS.

1. Weathering, Soils, and Paleoclimates.

Subaerial Weathering Processes.

Physical Weathering. Chemical Weathering. Weathering Rates. Products of Subaerial Weathering.

Submarine Weathering Processes and Products. Soils.

Soil-Forming Processes. Soil Profiles and Soil Classification. Palesols. Recognition of Palesols.

Paleoclimates.

Paleoclimate Indicators. Causes of Climatic Variations-Forcing Factors. Influence of Climate on the Sedimentary Record. Paleoclimate Modeling. Major Paleoclimatic Patterns on Earth.

Concluding Remarks.

2. Transport and Deposition of Siliciclastic Sediment.

Fundamentals of Fluid Flow.

Types of Fluids. Laminar versus Turbulent Flow. Reynolds Number. Velocity Profile and Bed Roughness. Boundary Shear Stress. Froude Number.

Particle Transport by Fluids.

Particle Entrainment by Currents. Role of Particle Settling Velocity in Transport. Sediment Loads and Transport Paths. Sediment Transport and Bedform Generation. Transport by Wind. Transport by Glacial Ice. Deposits of Fluid Flows.

Particle Transport by Sediment Gravity Flows.

Turbidity Currents. Liquefied Flows. Grain Flows. Debris Flows and Mud Flows.

II. PHYSICAL PROPERTIES OF SEDIMENTARY ROCKS.

3. Sedimentary Textures.

Grain Size.

Grain-Size Scales. Measuring Grain Size. Graphical and Mathematical Treatment of Grain-Size Data. Application and Importance of Grain-Size Data.

Particle Shape.

Particle Form. Roundness. Surface Texture. Fourier Shape Analysis.

Fabric.

Grain Orientation. Grain Packing, Grain-to-Grain Relations, and Porosity.

4. Sedimentary Structures.

Kinds of Primary Sedimentary Structures. Stratification and Bedforms.

Bedding and Lamination. Ripples and Cross-Bedding. Ripple Cross-Lamination. Flaser and Lenticular Bedding. Hummocky Cross-Stratification. Irregular Stratification.

Bedding-Plane Markings.

Markings Generated by Erosion and Deposition. Markings Generated by Deformation: Load Casts. Biogenic Structures. Bedding-Plane Markings of Miscellaneous Origin.

Other Structures.

Sandstone Dikes and Sills. Structures of Secondary Origin.

Paleocurrent Analysis from Sedimentary Structures.

III. COMPOSITION, CLASSIFICATION, AND DIAGENESIS OF SEDIMENTARY ROCKS.

5. Siliciclastic Sedimentary Rocks.

Sandstones.

Framework Mineralogy. Mineral Cements. Chemical Composition. Classification of Sandstones. Sandstone Maturity. General Characteristics of Major Classes of Sandstones.

Conglomerates.

Particle Composition. Classification. Origin and Occurrence of Conglomerates.

Shales.

Composition. Classification. Origin and Occurrence of Shales.

Provenance Significance of Mineral Compositions. Diagenesis.

Stages and Realms of Diagenesis. Major Diagenetic Processes and Effects.

6. Carbonate Sedimentary Rocks.

Elemental Chemistry. Mineralogy. Limestone Textures.

Carbonate Grains. Microcrystalline Calcite. Sparry Calcite.

Dolomite Textures. Structures in Carbonate Rocks. Classification of Carbonate Rocks. Origin of Carbonate Rocks.

Limestone. The Role of Organisms in Precipitation of Calcium Carbonate. Dolomites. Other Factors Affecting Early Dolomization.

Diagenesis.

Regimes of Carbonate Diagenesis. Major Diagenetic Processes and Changes. Summary Results of Carbonate Diagenesis.

7. Other Chemical/Biochemical and Carbonaceous Sedimentary Rocks.

Evaporites.

Composition. Kinds of Evaporites. Origin of Evaporite Deposits. Diagenesis of Evaporites.

Siliceous Sedimentary Rocks (Cherts).

Mineralogy and Texture. Chemical Composition. Varieties of Chert. Bedded Chert. Nodular Cherts. Origin of Cherts.

Iron-Bearing Sedimentary Rocks.

Kinds of Iron-Rich Sedimentary Rocks. Iron-Formations. Ironstones. Iron-Rich Shales. Miscellaneous Iron-Rich Sediments. Origin of Iron Formations and Ironstones.

Sedimentary Phospohrites.

Composition of Phosphorites. Characteristics of Phosphate Deposits. Principal Kinds of Phosphorite Deposits. Origin of Phosphorites. Summary of Phosphorite Deposition. An Alternate View.

Carbonaceous Sedimentary Rocks: Coal, Oil Shale, Bitumens.

Introduction. Kinds of Organic Matter in Sedimentary Rocks. Classification of Carbonaceous Sedimentary Rocks. Oil Shale (Kerogen Shale). Petroleum and Natural Bitumins.

IV. DEPOSITIONAL ENVIRONMENTS.

8. Principles of Environmental Interpretation and Classification.

Concept of Environment. Sedimentary Processes and Products.

Sedimentary Process and Response. Facies Associations.

Basic Tools of Environmental Analysis. Classification of Depositional Environments. Facies Models.

Definition of Models. Types of Facies Models. Construction and Use of Models.

9. Continental Environments.

Fluvial Systems.

Alluvial Fans. River Systems.

Eolian Desert Systems.

Introduction. Transport and Depositional Process. Deposits of Modern Deserts. Kinds of Eolian Systems. Bounding Surfaces in Eolian Deposits. Ancient Desert Deposits.

Lacustrine Systems.

Origin and Size of Lakes. Sedimentation Processes in Lakes. Characteristics of Lacustrine Deposits. Recognition of Ancient Lake Deposits. Examples of Ancient Lake Deposits.

Glacial Systems.

Introduction. Environmental Setting. Transport and Deposition in Glacial Environments. Glacial Facies. Continental Ice Facies. Marine Glacial Facies. Vertical Facies Successions. Ancient Glacial Deposits.

10. Marginal Marine Environments.

Deltaic Systems.

Introduction. Delta Classification and Sedimentation Processes. Physiographic and Sediment Characteristics of Alluvial Deltaic Systems. Progradational and Transgressive Phases of Delta Development. Recognition of Ancient Deltaic Deposits. Ancient Deltaic Systems.

Beach and Barrier Island Systems.

Introduction. Depositional Setting. Depositional Processes on Beaches. Characteristics of Beach and Barrier-Island Deposits in Modern Environments. Transgressive and Regressive Beach and Barrier-Island Deposits in the Geologic Record.

Estuarine Systems.

Introduction. Physiography of Estuaries and Lagoons. Hydrologic and Sediment Characteristics.

Lagoonal Systems.

Ancient Lagoonal Deposits.

Tidal-Flat Systems.

Introduction. Depositional Setting. Sedimentation Process. Characteristics of Tidal-Flat Sediments. Ancient Tidal-Flat Sediments.

11. Siliciclastic Marine Environments.

The Neritic (Shelf) Environment.

Physiography and Depositional Setting. Shelf Sediment Transport and Deposition. Wave- and Storm-Dominated Shelves. Tide-Dominated Shelves. Shelves Dominated by Intruding Ocean Currents. Shelf Transport by Density Currents. Effects of Sea-Level Change on Shelf Transport. Biologic Activities on Shelves. Ancient Siliciclastic Shelf Sediments.

The Oceanic (Deep-Water) Environment.

Depositional Setting. Transport and Depositional Processes to and within Deep Water. Principal Kinds of Modern Deep-Sea Sediments. Terrigenous Sediments. Pelagic Sediments. Chemical Sediments. Ancient Deep-Sea Sediments.

12. Carbonate and Evaporite Environments.

Carbonate Shelf (Nonreef) Environments.

Depositional Setting. Sedimentation Processes. Skeletal and Sediment Characteristics of Carbonate Deposits. Examples of Modern Carbonate Platforms. Examples of Ancient Carbonate Shelf Successions.

Slope/Basin Carbonates. Organic Reef Environments.

Modern Reefs and Reef Environments. Ancient Reefs.

Mixed Carbonate-Siliciclastic Systems. Evaporite Environments.

General Statement. Modern Evaporite Environments. Ancient Evaporate Environments.

V. PRINCIPLES OF STRATIGRAPHY AND BASIN ANALYSIS.

13. Lithostratigraphy.

Types of Lithostratigraphic Units. Stratigraphic Contacts.

Contacts between Conformable Strata. Contacts between Laterally Adjacent Lithosomes. Unconformable Contacts.

Vertical and Lateral Successions of Strata.

Nature of Vertical Successions. Cyclic Successions. Sedimentary Facies. Walthers Law of Succession of Facies. Effects of Climate and Sea Level on Sedimentation Patterns.

Nomenclature and Classification of Lithostratigraphic Units.

Development of the Stratigraphic Code. Major Types of Stratigraphic Units. Formal Lithostratigraphic Units.

Correlation of Lithostratigraphic Units.

Introduction. Definition of Correlation. Lithocorrelation.

14. Seismic Stratigraphy.

Early Development of Seismic Methods. Principles of Reflection Seismic Methods.

On-Land Surveying. Marine Seismic Surveying.

Application of Reflection Seismic Methods to Stratigraphic Analysis.

Parameters Used in Seismic Stratigraphic Interpretation. Procedures in Seismic Stratigraphic Analysis. Identification of Depositional Sequences.

Correlation by Seismic Events. Nomenclature and Classification of Seismic Stratigraphic Units.

15. Sequence Stratigraphy.

Fundamental Concepts of Sequence Stratigraphy. Methods and Applications of Sequence Stratigraphy.

Methods. Range of Environmental Application.

Global Sea-Level Analysis.

General Principles. The Reliability of Sea-Level Analysis from Sequence-Stratigraphic Data.

Concluding Remarks.

16. Magnetostratigraphy.

Sampling, Measuring, and Displaying Remanent Magnetism. Development of the Magnetic Polarity Time Scale. Nomenclature and Classification of Magnetostratigraphic Units. Applications of Magnetostratigraphy and Paleomagnetism.

Correlation. Geochronolgoy. Paleoclimatolgoy. Other Applications of Paleomagnetism.

17. Biostratigraphy.

Fossils as a Basis for Stratigraphic Subdivision.

Principle of Faunal Succession. Concept of Stage. Concept of Zone.

Biostratigraphic Units.

Principal Categories of Zones. Rank of Biostratigaphic Units. Naming Biostratigraphic Units.

The Basis for Biostratigraphic Zonation: Changes in Organisms through Time.

Evolution. Taxonomic Classification and Importance of Species. Changes in Species through Time. Models and Rates of Evolution.

Distribution of Organisms in Space: Paleobiogeography.

Dispersal of Organisms. Barriers to Dispersal.

Combined Effects of the Distribution of Organisms in Time and Space. Biocorrelation.

Correlation by Assemblage Zones. Correlation by Abundance Zones. Chronocorrelation by Fossils. Correlation by Biologic Interval Zones. Correlation by Biogeographical Abundance Zones.

18. Chronostratigraphy and Geologic Time.

Geologic Time Units. The Geologic Time Scale.

Purpose and Scope. Development of the Geologic Time Scale.

Calibrating the Geologic Time Scale.

Calibrating the Geologic Time Scale by Fossils: Biochronology. Calibrating by Absolute Ages: Radiochronology.

Chronocorrelation.

Event Correlation and Event Stratigraphy. Correlation by Stable Isotope Events. Problems with Isotopic Chronocorrelation.

19. Basin Analysis, Tectonics, and Sedimentation.

Mechanisms of Basin Formation (Subsidence). Kinds of Sedimentary Basins.

Intracratonic Basins. Rifts. Aulacogens. Continental Rises and Terraces. Intraplate Basins Floored by Oceanic Crust. Subduction-Related Basins. Strike-Slip/Transform-Fault-Related Settings. Collision-Related Settings.

Sedimentary Basin Fill. Techniques of Basin Analysis.

Measuring Stratigraphic Sections. Preparation of Stratigraphic Maps and Cross Sections. Paleocurrent Analysis and Paleocurrent Maps. Siliciclastic Petrofacies (Provenance) Studies. Geophysical Studies.

Applications of Basic Analysis.

Interpreting Geologic History. Economic Applications.

Relationship of Tectonics and Sedimentation.

Appendix A: Shields Diagram.
Appendix B: North American Stratigraphic Code.
Appendix C: Nomenclature of Chronostretigraphic Units.
Appendix D: Major Kinds of Sedimentary Basins and Their Tectonic Settings.
Appendix E: : Web Sites Pertaining to Sedimentology and Stratigraphy.
Bibliography.
Index.

Additional information

GOR007458426
9780130996961
0130996963
Principles of Sedimentology and Stratigraphy by Sam Boggs, Jr.
Used - Very Good
Hardback
Pearson Education (US)
20001229
726
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book - there is no escaping the fact it has been read by someone else and it will show signs of wear and previous use. Overall we expect it to be in very good condition, but if you are not entirely satisfied please get in touch with us

Customer Reviews - Principles of Sedimentology and Stratigraphy