Cart
Free US shipping over $10
Proud to be B-Corp

Inductive Powering Koenraad van Schuylenbergh

Inductive Powering By Koenraad van Schuylenbergh

Inductive Powering by Koenraad van Schuylenbergh


$201.99
Condition - New
Only 2 left

Summary

Inductive powering has been a reliable and simple method for many years to wirelessly power devices over relatively short distances, from a few centimetres to a few feet.

Inductive Powering Summary

Inductive Powering: Basic Theory and Application to Biomedical Systems by Koenraad van Schuylenbergh

Inductive powering has been a reliable and simple method for many years to wirelessly power devices over relatively short distances, from a few centimetres to a few feet. Examples are found in biomedical applications, such as cochlear implants; in RFID, such as smart cards for building access control; and in consumer devices, such as electrical toothbrushes. Device sizes shrunk considerably the past decades, demanding accurate design tools to obtain reliable link operation in demanding environments. With smaller coil sizes, the link efficiency drops dramatically to a point where the commonly used calculation methods become invalid.

Inductive Powering: Basic Theory and Application to Biomedical Systems lists all design equations and topology alternatives to successfully build an inductive power and data link for your specific application. It also contains practical guidelines to expand the external driver with a servomechanism that automatically tunes itself to varying coupling and load conditions.

Table of Contents

Preface. Symbols and Units. CHAPTER 1: AN INTRODUCTION ON TELEMETRY. 1.1 Wireless Connections. 1.2 How To Choose Between Link Types? 1.3 Conclusions. 1.4 References. CHAPTER 2: THE CONCEPTS OF INDUCTIVE POWERING. 2.1 Induction Theory. 2.2 Inductive Powering. 2.3 The Driven Inductive Link. 2.4 Link Optimisation. 2.5 Discussion: Optimisation Of Weakly Coupled Links. 2.6 Conclusions. 2.7 References. CHAPTER 3: EXACT LINK FORMULAE. 3.1 Inductive Links With A Parallel-Resonant Secondary. 3.2 Inductive Links With A Series-Resonant Secondary. 3.3 Conclusions. 3.4 References. CHAPTER 4: PRIMARY COIL DRIVERS. 4.1 Class C. 4.2 Modelling of Switch Transistors. 4.3 Class D. 4.4 The Importance of Supply Decoupling. 4.5 Ideal Active-Device Behaviour. 4.6 Saturating Class C. 4.7 Class E. 4.8 Class E With 1 Coil And 1 Capacitor. 4.9 Driving Weakly Coupled Links. 4.10 Conclusions. 4.11 References. CHAPTER 5: OPTIMISATION OF THE DRIVEN INDUCTIVE LINK. 5.1 Optimisation of the Driven Link. 5.2 The Optimisation Strategy. 5.3 Design Example. 5.4 Conclusions. 5.5 References. CHAPTER 6: AUTOMATIC LINK TUNING. 6.1 Automatic Search Of The Transfer Frequency And Auto-Regulation Of The Driver Power. 6.2 Switch-Mode Coil Driver With Load-Resonance Control. 6.3 Prototype Results And Discussion. 6.4 References. APPENDIX A1: VECTOR FORMULAE. APPENDIX A2: COIL MODELS AND MEASUREMENTS. A2.1 Coil Models. A2.2 Coil Measurements. A2.3 References. APPENDIX A3: SATURATING-CLASS-C AMPLIFIERS. Index

Additional information

NPB9789048124114
9789048124114
9048124115
Inductive Powering: Basic Theory and Application to Biomedical Systems by Koenraad van Schuylenbergh
New
Hardback
Springer
2009-06-05
223
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Inductive Powering